(来源:AGV网)
|导入
在具身智能领域,强化学习(Reinforcement Learning, RL)正成为实现自主决策与自适应操作的重要技术路径。尤其对于多自由度机械臂系统,如何让其在复杂环境中高效、稳定地完成指定任务,是当前研究与工程应用的关键挑战之一。
PiPER 作为松灵机器人推出的高性价比六轴协作机械臂,凭借其开源生态和灵活的控制接口,为开发者提供了理想的实验平台。
本文将围绕 “PiPER RL Demo” 开源项目,详细介绍如何在 Mujoco 和 Genesis 两大主流仿真环境中,构建并训练一个面向“末端夹爪到达目标位置”任务的强化学习策略。我们将从环境搭建、自定义 Gym 环境设计、奖励函数构建到并行训练与可视化评估,完整呈现一个端到端的 RL 开发流程,帮助读者快速上手机器人强化学习实践。
代码仓库
PiPER_RL:https://github.com/vanstrong12138/Piper_rl.git
AgileX-College:https://github.com/agilexrobotics/Agilex-College.git
| 一、环境依赖
• 安装RL相关的依赖
pip install -r requirements.txt
• 安装Genesis相关的依赖
1. Pytorch 安装Pytorch,根据自己的CUDA版本选择对应的安装命令,命令在链接中寻找相应cuda版本的pytorch。例如使用cuda12.9的版本,安装命令如下:
pip install torch==2.8.0 torchvision==0.23.0 torchaudio==2.8.0 --index-url https://download.pytorch.org/whl/cu129
2.Genesis World 安装Genesis World,命令如下:
pip install genesis-world
• 安装Mujoco
pip install mujoco==3.3.2
| 二、Genesis 示例
在genesis中加载piper模型
运行genesis_demo/hello_genesis.py
python genesis_demo/hello_genesis.py可以看见成功加载了Piper模型
在genesis中控制PiPER模型
运行genesis_demo/control_piper.py
python genesis_demo/control_piper.py可以看见piper根据设定的位置进行运动
在genesis中实现多个piper并行仿真
运行genesis_demo/multi_piper.py
python genesis_demo/multi_piper.py在genesis中实现多个piper并行训练
运行piper_rl_genesis.py
python piper_rl_genesis.py可以看见多个piper试图接近设定的位置
开启tensorboard可以看见训练过程中多个piper的奖励变化
tensorboard --logdir tensorboard/piper_reach_target/| 三、在genesis中实现piper env的基础步骤
1. 初始化env
# 继承gym.Env更详细的方法参考OpenAI提供的gym示例
class PiperEnv(gym.Env):
# __init__():将会初始化环境以及初始化机器人的参数、动作空间与状态空间,便于强化学习算法在给定的状态空间中搜索合适的动作
def __init__(self, visualize: bool = False):
super(PiperEnv, self).__init__()
self.visualize = visualize
# 设置需要控制的关节索引
self.jnt_name = [
"joint1",
"joint2",
"joint3",
"joint4",
"joint5",
"joint6"
]
# 设置随机目标点的生成空间与piper机械臂的工作空间
self.workspace = {
'x': [-0.5, 1.5],
'y': [-0.8, 0.8],
'z': [0.05, 0.5]
}
# 设置环境的设备
self.tensor_device = "cpu"
self.gs_device = gs.cpu
# 设置关节限位
self.jnt_range = torch.tensor([
[-2.61, 2.61],
[0, 3.14],
[-2.7, 0],
[-1.83, 1.83],
[-1.22, 1.22],
[-1.57, 1.57]
], device=self.tensor_device)
# piper机械臂关节的PD控制器参数
self.kp = torch.tensor([4500, 4500, 3500, 3500, 2500.0, 2500.0], device=self.tensor_device)
self.kv = torch.tensor([450.0, 450.0, 350.0, 350.0, 250.0, 250.0], device=self.tensor_device)
gs.init(backend = self.gs_device)
# 创建genesis场景
self.scene = gs.Scene(
# 设置相机
show_viewer = self.visualize,
viewer_options = gs.options.ViewerOptions(
camera_pos = (3.5, -1.0, 2.5),
camera_lookat = (0.0, 0.0, 0.5),
camera_fov = 40,
),
# 设置物理引擎
rigid_options = gs.options.RigidOptions(
dt = 0.01,
),
)
# 添加地面
plane = self.scene.add_entity(
gs.morphs.Plane(),
)
# 添加piper机器人
self.robot = self.scene.add_entity(
gs.morphs.MJCF(file='xml/agilex_piper/piper.xml'),
)
# 构建场景
self.scene.build()
# 初始姿态是piper机械臂的默认姿态,即所有关节角度为0
self.default_joint_pos = torch.tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0], device=self.tensor_device)
# 定义末端执行器的位置x,y,z(实际当piper为初始姿态时,末端执行器的位置不为(0,0,0))
self.default_ee_pos = torch.tensor([0.0, 0.0, 0.0], device=self.tensor_device)
# 定义动作空间与状态空间,确保关节的数值不会超过-PI到PI
self.action_space = spaces.Box(low=-3.14, high=3.14, shape=(6,), dtype=np.float32)
# 定义状态空间,包括6个关节角度、3个末端执行器位置
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(9,), dtype=np.float32)
self.motors_dof_idx = [self.robot.get_joint(name).dof_start for name in self.jnt_name]
self.robot.set_dofs_kp(self.kp, self.motors_dof_idx)
self.robot.set_dofs_kv(self.kv, self.motors_dof_idx)
self.goal = torch.tensor(torch.zeros(3, dtype=torch.float32), device=self.tensor_device)
self.last_action = torch.tensor(torch.zeros(6, dtype=torch.float32), device=self.tensor_device)
self.goal_threshold = 0.0052. 设计奖励函数
def calc_reward(self, action, obs):
# 计算机械臂关节与目标位置的距离
dist_to_goal = torch.linalg.norm(obs[6:] - self.goal)
# 非线性距离奖励
if dist_to_goal < self.goal_threshold:
distance_reward = 100.0
elif dist_to_goal < 2*self.goal_threshold:
distance_reward = 50.0
elif dist_to_goal < 3*self.goal_threshold:
distance_reward = 10.0
else:
distance_reward = 1.0 / (1.0 + dist_to_goal)
# 动作相关惩罚:惩罚关节大幅度变化
action_diff = action - self.last_action
smooth_penalty = 0.1 * torch.linalg.norm(action_diff)
# 关节角度限制惩罚
joint_penalty = 0.0
for i in range(6):
min_angle = self.jnt_range[i][0]
max_angle = self.jnt_range[i][1]
if obs[i] < min_angle:
joint_penalty += 0.5 * (min_angle - obs[i])
elif obs[i] > max_angle:
joint_penalty += 0.5 * (obs[i] - max_angle)
# 总奖励计算
total_reward = distance_reward - smooth_penalty - joint_penalty
# 更新上一步动作
self.last_action = action.clone()
return total_reward, dist_to_goal3. 设置步进函数
def step(self, action):
action_tensor = torch.tensor(action, device=self.tensor_device, dtype=torch.float32)
# 动作缩放: 归一化不同物理量纲的观测值.神经网络会对大数值特征更敏感,训练不稳定,通过缩放使所有观测值在相似范围内
scaled_action = torch.zeros(6, device=self.tensor_device, dtype=torch.float32)
for i in range(6):
scaled_action[i] = self.jnt_range[i][0] + (action_tensor[i] + 1) * 0.5 * (self.jnt_range[i][1] - self.jnt_range[i][0])
# genesis机器人执行动作
self.robot.control_dofs_position(scaled_action, self.motors_dof_idx)
# genesis场景模拟一步
self.scene.step()
# 观测
obs = self.get_observation()
# 计算奖励
reward, dist_to_goal = self.calc_reward(action_tensor, obs)
terminated = False
if dist_to_goal < self.goal_threshold:
terminated = True
if not terminated:
if time.time() - self.start_t > 20.0:
reward -= 10.0
print(f"[超时] 时间过长,奖励减半")
terminated = True
info = {
'is_success': terminated and (dist_to_goal < self.goal_threshold),
'distance_to_goal': dist_to_goal.item()
}
return obs.cpu().numpy(), reward.item(), terminated, False, info| 四、Mujoco示例
在mujoco中实现多个piper并行训练
运行piper_rl_mujoco.py
python piper_rl_mujoco.py开启tensorboard可以看见训练过程中多个piper的奖励变化
tensorboard --logdir tensorboard/piper_reach_target/在mujoco中测试训练好的模型
运行piper_rl_mujoco.pypython piper_rl_mujoco.py
可以看到piper成功到达目标位置
参考
[https://github.com/LitchiCheng/mujoco-learning](https://github.com/LitchiCheng/mujoco-learning)
通过在 Mujoco 与 Genesis 两个仿真平台上的对比实验,我们不仅验证了 PiPER 机械臂在强化学习框架下的可训练性,也展示了 Genesis 在多实例并行仿真方面的高效优势。无论是初学者希望理解 RL 与机器人控制的结合方式,还是研究者寻求高性能仿真工具链,本项目都提供了一个清晰、可复现的技术范例。